To find the distance between two points on a coordinate plane, you can use the Pythagorean Theorem.

In a right triangle, you calculated the vertical height (a) and the horizontal height (b).

These lengths were then substituted into Pythagorean Theorem $a^{2}+b^{2}=c^{2}$ and the result was the distance between the two points.

Using Pythagorean Theorem to find Distance

- Step 1) Find the length of $a: y_{1}-y_{2}$
- Step 2) Find the length of $\mathbf{b}: \underline{x_{1}}-\underline{x}_{2}$
- Step 3) Substitute the values of a and b into Pythagorean $\underline{a^{2}+b^{2}=c^{2}}$

Example 1) Calculate the distance between the points $(4,9)$ and $(-2,6)$ using the Pythagorean Theorem.

Using Pythagorean Theorem

Step 1: Subtract x-coordinates (side a)
$4-(-2)=6$
Step 2: Subtract y-coordinates (side b)
$9-6=3$
Step 3: Use Pythagorean Theorem to find distance
$a^{2}+b^{2}=c^{2}$
$6^{2}+3^{2}=c^{2}$
$36+9=c^{2}$
$\sqrt{45}=c$

Example 2) Graph the following points $A(-4,8), B(-1,2)$ and $C(7,6)$. Then find the perimeter of the triangle. Find the distance between each set of vertices.
$A B=(-3)^{2}+(6)^{2}=c^{2}$
$=9+36=c^{2}$
$=45=c^{2}$
$B C=(-8)^{2}+(-4)^{2}=c^{2}$
$A C=(-11)^{2}+(2)^{2}=c^{2}$
$=64+16=c^{2}$
$=121+4=c^{2}$
$=80=c^{2}$
$=125=c^{2}$
$\sqrt{45}=c$
$\sqrt{80}=c$
$\sqrt{125}=\mathrm{c}$

YOU TRY!!!

Example 3) What is the distance between $(-2,1)$ and $(1,5)$?
Example 4) What is the distance between $(-6,6)$ and $(1,-4)$?

